

Harmful Algal Blooms: Nature, Occurrence and Regulatory Outlook

Karl Mueller Environmental Manager Refinery Specialties, Inc.

Scope

- Harmful Algal Blooms (HABs) defined
- History
- Algal Species of Concern
- Algal Toxins
- Factors Contributing to HAB development
- Current Recommended Exposure Levels
- Regulatory Outlook

Scope (continued)

- Implications for Regulated Community
- Algal Control Methods
- Recommendations
- Conclusion

Four Main Questions

- What Are HABs?
- What toxins are associated with HABs?
- Under what conditions do HABs form?
- How can they be controlled?

Harmful Algal Blooms - defined

- An algal bloom is a rapid increase or accumulation in the population of algae in a water system.
- A Harmful Algal Bloom (HAB) is an algal bloom which results in (or has the potential to result in) adverse impacts to human health and the environment.
- May occur in marine, freshwater, and brackish water environments.

Harmful Algal Blooms - Impacts

HABs can have a variety of adverse impacts, including:

- 1. Dramatically altering water chemistry (pH and DO)
 - Raise pH by removing CO₂ and increasing OH⁻ concentration
 - Supersaturate DO levels in upper water column (near-surface)
 - Reduce DO through cellular respiration and biological degradation
- 2. Reducing light transmission habitat alteration
- 3. Contributing to taste and odor problems (drinking water sources)
- Other aesthetic effects
 - water discoloration, interference with recreational activities
- Releasing toxins into water bodies (source and receiving)
 - Cause illness and death via food chain or biomass accumulation (neurotoxins)
 - Cause mechanical damage to freshwater and marine organisms
 - Human health risk through exposure and consumption of contaminated seafood and drinking water

EMERGING CONTAMINANTS

Algal Activity in Aquatic Environments

- Algae exhibit strong diurnal patterns of activity (photosynthetic activity)
- During day, algae migrate upward in water column, DO and pH levels increase
 - Photosynthesis results in O₂ production
 - CO₂ removal from atmosphere and water (results in increased OH⁻ concentration and increased alkalinity)
- During day, pattern is reversed – DO consumed through respiration, CO₂ given off

HAB-related illnesses

- Examples of documented human illnesses / syndromes associated with HABs include:
 - Paralytic Shellfish Poisoning (PSP)
 - Diarrheal Shellfish Poisoning (DSP)
 - Neurotoxic Shellfish Poisoning (NSP)
 - Ciguatera Fishfood Poisoning (CFP)
 - Estuary Associated Syndrome (EAS)
 - Amnesic Shellfish Poisoning (ASP)
 - Cyanobacterial Toxin Poisoning (CTP)

HAB-related illnesses – causal organisms

- Paralytic Shellfish Poisoning (PSP)
- Diarrheal Shellfish Poisoning (DSP)
- Neurotoxic Shellfish Poisoning (NSP)
- Ciguatera Fishfood Poisoning (CFP)
- Estuary Associated Syndrome (EAS)
- Amnesic Shellfish Poisoning (ASP)
- Cyanobacterial Toxin Poisoning (CTP)

HAB-related illnesses – causal organisms

- Paralytic Shellfish Poisoning (PSP)
- Diarrheal Shellfish Poisoning (DSP)
- Neurotoxic Shellfish Poisoning (NSP)
- Ciguatera Fishfood Poisoning (CFP)
- Estuary Associated Syndrome (EAS)
- Amnesic Shellfish Poisoning (ASP) → Diatom (marine)
- Cyanobacterial Toxin Poisoning (CTP)

Dinoflagellate (marine)

HAB-related illnesses - causal organisms

- Paralytic Shellfish Poisoning (PSP)
- Diarrheal Shellfish Poisoning (DSP)
- Neurotoxic Shellfish Poisoning (NSP)
- Ciguatera Fishfood Poisoning (CFP)
- Estuary Associated Syndrome (EAS)
- Amnesic Shellfish Poisoning (ASP) → Diatom (marine)
- Cyanobacterial Toxin Poisoning (CTP) → Cyanobacteria (freshwater)
 - Usually the result of drinking contaminated water
 - A sub-acute condition characterized by liver damage (jaundice)
 - May be accompanied by other, often reversible, symptoms
 - Acute cases can result in neurotoxic effects

Source: Mosby's Medical Dictionary, 9th edition. © 2009, Elsevier)

Dinoflagellate (marine)

Cyanobacteria - Overview

General features:

Single-celled organism

- Unicellular and filamentous species
- May form colonies or aggregations – phototrophic biofilms or microbial mats
- Can exist as free-living individuals or in symbiotic relationships, e.g. lichen
- Found in a variety of ecosystems
- Autotrophic
 - Reduce atmospheric CO₂ to produce carbohydrate (under aerobic conditions)
 - Fix both N₂ and C; produce O₂

Cell type comparison

Cyanobacteria - Overview

General features:

- · Single-celled organism
 - Unicellular and filamentous species
 - May form colonies or aggregations – phototrophic biofilms or microbial mats
 - Can exist as free-living individuals or in symbiotic relationships, e.g. lichen
 - Found in a variety of ecosystems
- Autotrophic
 - Reduce atmospheric CO₂ to produce carbohydrate (under aerobic conditions)
 - Fix both N₂ and C; produce O₂

Cell type comparison

- Complex internal structure (organelles)
- Membrane-bound "true" nucleus
- · Common metabolic pathways
- Chlorophyll within chloroplasts

DETECTION // TREATMENT // REGULATION

Cyanobacteria - Overview

General features:

- · Single-celled organism
 - Unicellular and filamentous species
 - May form colonies or aggregations – phototrophic biofilms or microbial mats
 - Can exist as free-living individuals or in symbiotic relationships, e.g. lichen
 - Found in a variety of ecosystems
- Autotrophic
 - Reduce atmospheric CO₂ to produce carbohydrate (under aerobic conditions)
 - Fix both N₂ and C; produce O₂

Cell type comparison

- Simple internal structure (few organelles)
- · No true nucleus; not membrane-bound
- · Variety of metabolic pathways
- · Chlorophyll throughout cytoplasm

Genera	Cyanotoxins	Target Organ
Microcystis, Anabaena, Planktothrix (Oso Nostoc, Hapalosiphon, Anabaenopsis, W	" Microcystins	Liver
Nodularia	Nodularins	Liver
Anabaena, Planktothrix (Oscillatoria), Ap Woronichinia	hanizomenon, Anatoxin-a	Synapse
Anabaena	Anatoxin-a(S)	Synapse
Cylindrospermopsis, Aphanizomenon, Ur	nezakia Cylindrospermopsins	Liver
Lyngbya	Lyngbyatoxin-a	Skin, GI tract
Anabaena, Aphanizomenon, Cylindrospe Lyngbya	rmopsis, Saxitoxin	Synapse
AII	Lipopolysaccharides	Exposed Tissue (irritant)
Lyngbya, Planktothrix (Oscillatoria), Schiz	cothrix Aplysiatoxins	Skin
AII	BMAA	CNS

Microcystin/Microcystin-LR (M. aeruginosa) Named after Microcystis aeruginosa Most prevalent and well-known algal Structure - cyclic peptide toxin - has been intensively studied 60 known variants; Microcystin-LR most commonly reported (standard lab method) Cyclic peptides as a class represent greatest human health concern Hepatotoxin; may be tumor promoter at low doses Microcystin-LR Stable over wide range of temperature By cacycle - English Wikipedia [1], CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1491847 and pH, not easily removed by traditional water treatment methods Kristian Peters http://www.korseby.net/outer/flora/algae/index.html - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9432568 SUMMIT DETECTION // TREATMENT // REGULATION

Nodularins

- Named after Nodularia spumigena (type species) – filamentous algae
- HABs associated with nodularin formation occur in saline inland waters and brackish systems, e.g. estuaries
- Similar chemical structure to microcystin
- Very stable and resistant to breakdown within natural environment
- Most common toxin associated with HABs globally

Photo courtesy http://oceandatacenter.ucsc.edu/PhytoGallery/Freshwater/Nodularia.html

(N. spumigena)

Structure - cyclic peptide

Nodularin

By Ed (Edgar181) - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=16209132

DETECTION // TREATMENT // REGULATION

Anatoxins

- Alkaloids as a class known to exhibit both toxic and psychotropic effects on mammals – biologically active
- Associated with at least four algal genera
- Anatoxin-a first identified in 1961 ("Very Fast Death Factor") following cattle poisoning event in Canada
- · Potent, fast-acting neurotoxins
- Stimulates nicotinic acetylcholine receptors, but not degraded by cholinesterase
- Used for investigating acetylcholine receptors in the nervous system
- Potential use as bioweapon

Structure - alkaloid

Anatoxin-a

Anatoxin-a-S

By Cacycle (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or Public domain], via Wikimedia Commons

DETECTION // TREATMENT // REGULATION

9

Cylindrospermopsins (CYN or CYL)

(C. raciborskii)

- Named for Cylindrospermopsis raciborskii – a filamentous algae
- Certain Cylindrospermopsis strains also capable of producing anatoxins and saxitoxin
- Implicated in hepatoenteritis outbreak in Palm Island, Australia in 1979
- Typically found in tropical regions but now present in temperate zones, e.g. Great Lakes (South American strain)
- A hepatotoxin and nephrotoxin
- · Bioaccumulation potential
- After microcystins, the algal toxins of greatest concern in US

Structure - alkaloid

Cylindrospermopsin

By Cacycle (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or Public domain], via Wikimedia Commons

 $Photo\ courtesy\ http://ocean datacenter.ucsc.edu/PhytoGallery/Freshwater/Cylindrospermopsins.html$

DETECTION // TREATMENT // REGULATION

Saxitoxin (STX)

- First identified in butter clam (Saxidomus giganteus)
- Produced by some marine dinoflagellates and puffer fish; several strains of algae
- One of most potent natural neurotoxins known
- Cause of Paralytic Shellfish Poisoning (PSP)
- Na-channel blocker disrupts neural response and prevents normal cell function
- Results in flaccid paralysis and can lead to death from respiratory failure
- Originally isolated and described by US military; chemical weapon designation TZ

Structure - alkaloid

Saxitoxin

By Cacycle (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.htm CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or Public domain], via Wikimedia Commons

Photo courtesy http://oceandatacenter.ucsc.edu/PhytoGallery/Freshwater/Cylindrospermopsins.html

DETECTION // TREATMENT // REGULATION

10

Lyngbyatoxin-a

- Cyanotoxin produced by Moorea producens (formerly Lyngbya majuscule)
- Lyngbya sp. also responsible for producing aplysiatoxins
- A defensive toxin produced to deter predators
- Low concentrations can cause dermatitis
- A blister agent (vesicant) and carcinogen (tumorigenic properties)

Photo courtesy http://oceandatacenter.ucsc.edu/PhytoGallery/Freshwater/Lyngbya

Inflammatory agent

(Lyngbya sp.)

Structure - alkaloid

Lyngbyatoxin-a

By Cacycle (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or Public domain], via Wikimedia Commons

DETECTION /

// TREATMENT // REGULATION

Aplysiatoxins

- Produced by marine algal species (Lyngbya sp.)
- Also associated with filamentous species such as Schizothrix calcicola and Oscillatoria nigroviridis
- Dibromoaplysiatoxin (hydroxyl group on six-member ring replaced with 2nd Br atom)
- Dermatotoxic an irritant most commonly associated with skin inflammation through direct contact
- Potent tumor promotors activate Protein kinase C – mechanism in common with Lyngbyatoxins

(Lyngbya sp.)

Structure - alkaloid

Aplysiatoxin

By Charlesy (talk · contribs) - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=8291335

DETECT

DETECTION // TREATMENT // REGULATION

Photo courtesy http://oceandatacenter.ucsc.edu/PhytoGallery/Freshwater/Lyngbya.html

B-Methylamino-L-alanine (BMAA)

- Produced by cyanobacteria in marine, freshwater, brackish and terrestrial settings
- Also found in aquatic organisms, lichens, fern species, cycads and in humans and animals that consume cycad seeds
- Multiple mechanisms of action; not completely understood
- BMAA present in brains of patients suffering from progressive non-genetic neurological diseases; causally implicated in so-called "tangle diseases" of brain
- Research underway to confirm and understand disease-causing mechanisms

Structure - amino acid

BMAA

DETECTION // TREATMENT // REGULATION

Role of Nutrients in HAB Formation

- In natural systems nitrogen, carbon, and phosphorus are key nutrients:
 - N present as metabolic waste products from aquatic organisms (NH₃, urea)
 - N also present as nitrates and nitrites from agricultural runoff (fertilizers, CAFOs, etc.)
 - Cyanobacteria have ability to fix atmospheric N2
 - P is in shortest supply a limiting nutrient
- Algae will incorporate bioavailable N and P in water column; synthesize own C through photosynthesis

- In natural systems nitrogen, carbon, and phosphorus are three principal nutrients:
 - N present as metabolic waste products (NH₃, urea)
 - N also present as nitrates and nitrites from agricultural runoff (fertilizers, CAFOs, etc.)
 - Cyanobacteria have ability to fix atmospheric N₂
 - P is in shortest supply a limiting nutrient
- Algae will incorporate bioavailable N and P in water column; synthesize own C through photosynthesis
- Suggests control of N and P critical!

- However....
 - The picture with respect to HAB formation (and the species implicated) is considerably more complex
- While nutrients play a crucial role, other environmental variables are also important, such as
 - 1. Temperature (optima vary by species)
 - Light (photoperiod and transmissivity)
 - · Abiotic sources of turbidity
 - 3. Weather
 - Wind (promotes mixing and overturn)
 - Rainfall events (flushing/nutrient transport)
 - Biotic factors

- Trophic State Index (TSI) relates presence/absence of nutrients to estimate of biological condition
 - Trophic state = the total weight of biomass in a given water body at the time of measurement
- Carlson Index relates three independent, correlated variables to classify water bodies in terms of algal biomass:
 - 1. Chlorophyll pigments (μg/l)
 - 2. Phosphorus concentration (μg/l)
 - 3. Secchi depth (m)

Trophic Index (TI)	Chlorophyll (μg/l)	P (μg/l)	Secchi Depth (m)	Trophic Class
< 30 – 40	0 – 2.6	0 – 12	> 8 – 4	Oligotrophic
40 – 50	2.6 – 20	12 – 24	4 – 2	Mesotrophic
50 – 70	20 – 56	24 – 96	2 – 0.5	Eutrophic
70 – 100+	56 – 155+	96 – 384	0.5 – < 2.5	Hypereutrophic

Trophic Index (TI)	Chlorophyll (µg/l)	P (μg/l)	Secchi Depth (m)	Trophic Class
< 30 – 40	0 – 2.6	0 – 12	> 8 – 4	Oligotrophic
40 – 50	2.6 – 20	12 – 24	4 – 2	Mesotrophic
50 – 70	20 – 56	24 – 96	2-0.5	Eutrophic
70 – 100+	56 – 155+	96 – 384	0.5 – < 2.5	Hypereutrophic

- Nutrient poor/low algal biomass
- Low primary productivity
- Relatively little sediment loading
- Almost no turbidity
- DO levels high; support oxygensensitive species
- Low HAB formation potential

Trophic Index (TI)	Chlorophyll (µg/l)	P (μg/l)	Secchi Depth (m)	Trophic Class
< 30 – 40	0 – 2.6	0 – 12	> 8 – 4	Oligotrophic
40 – 50	2.6 – 20	12 – 24	4-2	Mesotrophic
50 – 70	20 – 56	24 – 96	2 – 0.5	Eutrophic
70 – 100+	56 – 155+	96 - 384	0.5 – < 2.5	Hypereutrophic

- Moderate nutrient/sediment loads
- Good primary productivity; seasonal algae increase
- Higher turbidity
- DO levels high; vary seasonally
- Moderate HAB formation potential

Trophic Index (TI)	Chlorophyll (µg/l)	P (μg/l)	Secchi Depth (m)	Trophic Class
< 30 – 40	0 – 2.6	0 – 12	> 8 – 4	Oligotrophic
40 – 50	2.6 – 20	12 – 24	4 – 2	Mesotrophic
50 – 70	20 – 56	24 – 96	2 – 0.5	Eutrophic
70 – 100+	56 – 155+	96 – 384	0.5 - < 2.5	Hypereutrophic

EUTROPHIC LAKE

- High nutrient/sediment loads
- High primary productivity; algal populations year-round
- Much higher turbidity
- DO levels high but may be seasonally low, esp. at depth
- Significant HAB formation potential

Trophic Index (TI)	Chlorophyll (µg/l)	P (μg/l)	Secchi Depth (m)	Trophic Class
< 30 – 40	0 – 2.6	0 – 12	> 8 – 4	Oligotrophic
40 – 50	2.6 – 20	12 – 24	4 – 2	Mesotrophic
50 – 70	20 – 56	24 – 96	2 – 0.5	Eutrophic
70 – 100+	56 – 155+	96 – 384	0.5 – < 2.5	Hypereutrophic

- Extremely high nutrient/sediment
- Primary producers abundant other species significantly impacted or absent
- Extremely high turbidity
- DO levels low, pH high

Trophic Index (TI)	Chlorophyll (µg/l)	P (μg/l)	Secchi Depth (m)	Trophic Class
< 30 – 40	0 – 2.6	0 – 12	> 8 – 4	Oligotrophic
40 – 50	2.6 – 20	12 – 24	4 – 2	Mesotrophic
50 – 70	20 – 56	24 – 96	2 – 0.5	Eutrophic
70 – 100+	56 – 155+	96 – 384	0.5 – < 2.5	Hypereutrophic

- Extremely high nutrient/sediment loads
- Primary producers abundant other species impacted
- Extremely high turbidity
- DO levels low, pH high
- · HAB formation likely

HAB Events – Three Scenarios

Lake Erie Algal Blooms of 2011 and 2014

- Maumee and Cuyahoga River watersheds feed into Western Basin of Lake Erie
 - Maumee largely agricultural, non-point source runoff
 - Cuyahoga predominantly urban/suburban land use; point sources and non-point sources
 - Phosphorus is key nutrient
- Heavy rainfall events in Maumee watershed in Summer 2011 and 2014 resulted in high phosphorus levels – peaks coincided with HAB events
- High rainfalls event in urban watershed tend to dilute P; not a major HAB contributor
- HABs an ongoing/recurring problem

HAB Events - Three Scenarios

Field Remediation Site - Central Texas

- NWIRP McGregor (active 1945 1995)
 - Manufactured munitions and solid rocket motors
 - Perchlorate > 4 ppb identified in surface runoff in 1998 – threat to drinking water source (Lake Belton)
 - Remedial strategy involved passive and active treatment and removal of perchlorate
- Anaerobic WWT system brought on-line in 2002 – fluidized bed reactor (FBR)
- Treated effluent stored in holding ponds prior to batch or continuous discharge
- pH increase (> 9) noted in summer months

 correlated to low flows and longer
 residence times
- · Potential discharge permit implications
- No HAB formation but potential existed!

DETECTION // TREATMENT // REGULATION

HAB Events – Three Scenarios

Industrial WWTP - Texas Gulf Coast

- Industrial WWTP Regional Wastewater Treatment Authority
 - Facility constructed in 1972 to meet new CWA standards
 - Serves industrial customers exclusively (two petrochemical facilities; one terminal facility)
 - Activated sludge system formerly relied on combination of anaerobic, aerobic and facultative ponds
 - System upgraded in 2007 with construction of oxygen aeration basin (OAB) at front-end – 95% of treatment occurs here
- Seasonally adjust pH during summer months using sulfuric acid
- Presence of algae noted in storage basins
- · Periodic biomonitoring included in permit
- Failure of biomonitoring test led to identification of Microcystin and triggered Toxicity Reduction Evaluation (TRE)
- HAB and cyanotoxins identified!

Exposure Guidelines for and Regulation of Cyanotoxins

- In 1998, the World Health Organization (WHO) proposed provisional drinking water guideline of 1 μg/l for Microcystin-LR
- No similar guideline proposed for recreational contact
- No current federally enforceable limits; Health Advisories (HAs) have been issued with recommended exposure limits
- Cyanotoxins and cyanobacteria listed on Contaminant Candidate List (CCL) – CCL 1 of 1998, CCL 2 of 2005 and CCL 3 of 2009
- Anatoxin-a, cylindrospermopsin, and microcystin-LR listed on draft CCL 4 (April 2015)
- State approaches:
 - Minnesota Microcystin-LR: 0.1 μg/l
 - Oregon
 - Microcystin-LR: 1 μg/l
 Anatoxin-A: 3 μg/l
 Cylindrospermopsin: 1 μg/l

Saxitoxin: 3 μg/l

Exposure Guidelines for and Regulation of Cyanotoxins

- State approaches:
 - Minnesota Microcystin-LR: 0.1 μg/l
 - Oregon
 - Microcystin-LR: 1 μg/l
 - Anatoxin-A: 3 μg/l
 - Cylindrospermopsin: 1 μg/l
 - Saxitoxin: 3 μg/l
- Ohio following slide

Exposure Guidelines for and Regulation of Cyanotoxins

- State approaches:
- Ohio

Cyanotoxin	Do Not Drink (children < 6 and sensitive groups)	Do Not Drink (children > 6 and adults)	Do Not Use (Recreational Contact)
Microcystin	0.3 μg/l	1.6 μg/l	20 μg/l
Anatoxin-a	20 μg/l	20 μg/l	300 μg/l
Cylindrospermopsin	0.7 μg/l	3.0 μg/l	20.0 μg/l
Saxitoxin	0.2 μg/l	0.2 μg/l	3.0 μg/l

Summary and Conclusions

- A host of factors influence and control HAB development
- · Role of key nutrients is paramount
 - N:P, N:S, N:Si ratios play role
- Understanding overall context also crucial
 - Relevant biotic and abiotic factors
 - Role of biological communities in controlling/mediating HABs
- HAB formation in industrial/remedial site settings
 - Potential to form anywhere water is held or stored prior to discharge
 - Establishing and maintaining good site controls essential
 - Monitoring of nutrient inputs (baseline) and periodically during warm and wet weather months
- Prevention of HAB formation is key!

