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What is unconventional oil and gas extraction?

Retrieval of gas and oil from
low permeability formations

Horizontal Drilling
Hydraulic Fracturing
Shale Acidization

Waste handling and disposal
(Underground injection wells and recycling)




Unconventional vs. Conventional

Unconventional...
— Higher volumes of water use

— Lower productivity of gas wells (e.g.
5 years vs 20 years)

— Greater concern over well integrity
due to higher volumes of fluids

— Greater concern over spills because
of high volume waste handling \ L @ress i or
(SHALE, COALBED METHANE)
— Higher transportation costs of large Vi
water/waste volumes

& Unconventional

Conventional

Photo: Croft Production Systems



http://www.geologypage.com/2016/05/hydraulic-fracturing.html
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Environmental Concerns

Atmospheric pollution; greenhouse gases;
climate change

Emissions from waste storage, heavy
equipment, processing and transport, and
shale gas (leaks)

Pollution of surface and groundwater; toxic
substances; waste handling; water usage

Withdrawal of land resources; industrial sites;
changes in landscapes; soil quality

Seismic activity; waste disposal/ recycling/
reuse
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Produced Water Analysis
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Abstract: Trillions of liters of wastewater from oil and gas extraction are generated
annually in the US. The contribution from unconventional drilling operations (UDO), such
as hydraulic fracturing, to this volume will likely continue to increase in the foresecable
future. The chemical content of wastewater from UDC varies with region, operator, and
clapsed time after production begins. Detailed chemical analyses may be used to detennine
its content, eclccl appropriate treatment options, and identify its source in cases of
envi ination. In this study, one wastewater sample each from direct effluent, a
disposal well, and a waste pit, all in West Texas, were analyzed by gas chromatography-mass

spectrometry, mductively coupled plasma-optical emission spectroscopy, high performance

liquid  chre graphy-high lution mass  spect try, high performance ion
chromatography, total organic carbon/total nitrogen analysis, and pll and conductivity
analysis. Several compounds known to compose hydraulic fracturing fuid were detected
among two of the wastewater samples including 2-butoxyethanol, alkyl amines, and cocamide

Water 2015, 7, 1568-1579.
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PW Treatment Options

Adfiltwes w =
& ‘l « Treatment ~ 3 X :i
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Disposal

Ground Water

Well

0 Treatment

Flowback & ty
| Produced water ~ Recycle ‘

Surface Water

Agriculture

Cooling Towers Irrigation

—

pore, 4 bt Aad dpiaed b

Liden et al. Sci. Tot. Environ. 2018, 643, 107-118.



PW Treatment Options

Saltwater disposal (SWD) P®
S < 2 €D
57 4
f Oil enter gun barrel and :_} _‘::_',
Iron reducer added PW enter charge tank. —
PW is delivered to SWD
via truck or pipeline. Surfactant added

—

Lt e

Oil & water separated
using gravity flow by
hydrostatic pressure.

Iy > Filtration

2T (200 pm)

a2

Water emulsion
injected into
SWD well.

4

W

Disposal
Well

Liden, T., Clark, B.G., Hildenbrand, Z.L., Schug, K.A., 2017. Unconventional oil and gas production: waste management and the water cycle. In:
Schug, K.A., Hildenbrand, Z.L. (Eds.), Environmental Issues Concerning Hydraulic Fracturing. vol. 1. APMP. Academic Press, UK: pp. 17-45.



PW Treatment Options »~

Unconventional Conventonal Unconventional ﬁ

Delaware Basin Central Basgin Platform Midland Basin

Disposal
Saltwater disposal (SWD) n Well
PW PW

Scanlon et al. Environ. Sci. Technol.
2017, 51, 10903-10912
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PW Treatment Options

Removal of organics, incl. oil and grease
Solids removal; suspended particles and sand
Disinfection

Dissolved gas removal, if needed (H,S) ‘
Softening; reduce hardness/scaling o e
Removal of NORM |
Desalination

Dispo
Well

U Treatment

| owbac S
.' Produced water Recycle Q‘( ,
ooling Towers rrigation

NOoOUEWwWwN e

e Cost, Throughput, Performance
e Beware of industry stigma!




Liden et al. Sci. Tot. Environ

for Reuse

Treatment Performance

Drinking  Agricultural Livestock | Production well
water irrigation (mg/L) stimulation (mg/L)
(mg/L) (mg/L) (FAO) (Hildenbrand et al.,
(EPA (EPA) 2018; Wasylishen
SDWA) and
Fulton, 2012)

TDS 500 450

PH 6.5-8.5 6.5-8.4 6.0-8.0

TSS 500

Total nitrogen 443

Fluoride 4 1 2

Chloride 250 92 30,000-50,000

Bromide

Nitrate 44.3 5 90

Nitrite 10

Nitrate + nitrite 100

Sulfate 250 1000 500

Bicarbonate 91.5 300

Silica 35

Silver (Ag) 0.1

Aluminum (Al) 005-0.2 5 5

Arsenic (As) 0.01 0.1 0.2

Boron (B) 0.7 5 10

Barium (Ba) 2 20

Beryllium (Be) 0.004 0.1 0.1

Calcium (Ca) 2000

Cadmium (Cd)
Cobalt (Co)
Chromium (Cr)
Copper (Cu)
Iron (Fe)
Mercury (Hg)
Lithium (Li)
Magnesium (Mg)
Manganese (Mn)
Molybdenum
(Mo)
Sodium (Na)
Nickel (Ni)
Lead (Pb)
Antimony (Sb)
Selenium (Se)
Strontium (Sr)
Thallium (TI)
Uranium (U)
Valadium (V)
Zinc (Zn)
Benzene
Dichloromethane
Ethylbenzene
Toluene
Total xylenes

0.005

0.1
13
03
0.002

0.05

0.04

20
0.1
0.006
0.05

0.002
0.03

0.005
0.005
0.7

10

0.01
0.05
0.1
0.2

25

0.2
0.01

69
0.2

0.02

0.05

0.5
0.01
0.05
0.3

1000

0.05

0.1
24

. 2018, 643, 107-118.
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2000




PW Treatment Options

1. Removal of organics, incl. oil and grease
2. Solids removal; suspended particles and sand
3. Disinfection
. .  Gravity
4. Dissolved gas removal, if needed (H,S) « Holding tanks
5. Softening; reduce hardness/scaling * Hydrocyclones
e Floatation tanks
6. Removal of NORM e Activated carbon and
T i other media
/. Desalination e Bioremediation

Liden et al. Sci. Tot. Environ. 2018, 643, 107-118.



PW Treatment Options

1. Removal of organics, incl. oil and grease
2. Solids removal; suspended particles and sand
3. Disinfection

_ . « TSSvs. TDS
4. Dissolved gas removal, if needed (H,S) o TSS, filter @ 1 -2 um
5. Softening; reduce hardness/scaling * Coagulation

e Flocculation

6. Removal of NORM e Gravity separation
7 e Filtration

Desalination

Liden et al. Sci. Tot. Environ. 2018, 643, 107-118.



PW Treatment Options

1. Removal of organics, incl. oil and grease
2. Solids removal; suspended particles and sand
3. Disinfection

. .  Aeration
4. Dissolved gas removal, if needed (H,S) e Biocides

. - e Chlorination

5. Softening; reduce hardness/scaling . Filtration
6. Removal of NORM e Ozonation/UV
7.

Desalination

Liden et al. Sci. Tot. Environ. 2018, 643, 107-118.



PW Treatment Options

1. Removal of organics, incl. oil and grease

2. Solids removal; suspended particles and sand

3. Disinfection

4. Dissolved gas removal, if needed (H,S)

5. Softening; reduce hardness/scaling

6. Removal of NORM Elgf:: :;a' JrAvEngen
7. Desalination * Venting

Liden et al. Sci. Tot. Environ. 2018, 643, 107-118.



PW Treatment Options

1. Removal of organics, incl. oil and grease
2. Solids removal; suspended particles and sand
3. Disinfection
4. Dissolved gas removal, if needed (H,S)
5. Softening; reduce hardness/scaling
6. Removal of NORM * Precipitation
, ) e Zeolite and bentonite
7. Desalination media

Liden et al. Sci. Tot. Environ. 2018, 643, 107-118.



PW Treatment Options

1. Removal of organics, incl. oil and grease

2. Solids removal; suspended particles and sand

3. Disinfection

4. Dissolved gas removal, if needed (H,S)

5. Softening; reduce hardness/scaling

6. Removal of NORM * Distillation (many)
: : e Membrane

7. Desalination orocessing (many)

Liden et al. Sci. Tot. Environ. 2018, 643, 107-118.



A Case Study

Modular Portable Multi-modal

Treatment Process (15,000 bblis/d)

1. Oil and Waste Water Separation
2. Ozone Pre-Treatment

3. Solids Filtration

4. Media Filtration

5. UV Treatment

brine
GHALLENGER

WATER SOLUTIONS

Hildenbrand et al. Sci. Tot. Environ. 2018, 634, 1519-1529.



Sample Sample notes
ID

PW1 100 bbl of gel + breaker from waste pit. Only raw sample was collected
as this fluid could not be run through water treatment system

PW?2 Oilfield waste from gun barrel tanks of salt water disposal well site

PW2B  Oilfield waste from a second gun barrel tank from the same salt water
disposal site as PW2

PW3 Oilfield waste from settling tanks of salt water disposal well site

PW3B  Oilfield waste from a second set of settling tanks from the same salt
water disposal site as PW3

PW4 Oilfield waste from frac tanks of salt water disposal well site

PW4B  Oilfield waste from a second set of frac tanks from the same salt water
disposal site as PW4

PW5 Flowback water

PW6 Produced water A

PW7 Produced water B (Gilette, TX)

PWS8 Produced water C (Gonzales, TX)

PW9 Oilfield waste from waste water pipeline A

PW10  Oilfield waste from waste water pipeline B

PW11 Blend of PWs 8-10

Hildenbrand et al. Sci. Tot. Environ. 2018, 634, 1519-1529.




M x7 00
a5

Variations in Organic Composition

3.0

1.007

0.757

0.507

0.5

17

25

PW 3

T0

29 30 31

106

0.0

Hildenbrand et al. Sci. Tot. Environ. 2018, 634, 1519-1529.

PW 7

(250x zoom scale)

T.0

Raw produced water by GC-MS

# | Compound | # | Compound | # | Compound
1 Unretained 13 | Ethylene 25 | m-+ p-Xylene
Hydrocarbons chloride
2 Methanol 14 | 3-Hexanol 26 | Monane + o-
Xylene
3 Methanethiol 15 | Cyclo-hexane 27 | Alky!
aromatics
4 Ethanol 16 | Benzene 28 | Decane
5 iso-Pentane 17 | 3-methyl 29 | Undecane
hexana
6 Pentane 18 | Heptane 30 | Dodecane
Methylene 19 | Methyl- 31 | Tridecane
chloride cyclohexane
8 Methyl 20 | Toluene 32 | Tetradecane
acetate
g n-Propanal 21 | CB aliphatic + 33 | Pentadecans
C8 cyclic HC
10 | Hexane 22 | Octane 34 | Hexadecane
11 | 2-butanol 23 | C9 aliphatic HC
12 | Ethyl acetate 24 | Cyclohexanone
+ Ethyl
Benzene
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Organics

H,S, MeOH
MeSH, EtOH

uV (x10.000)

Ethyl Acetate TEX

177
167 ” Aliphatic Hydrocarbons

157

147
1.37
1.27
1.17

101 J l PW 11—Rav}v\

0-9' PW 11_03 MJMM\/A—AL
08 m.A—~.__ A A A\ M J\

0.7 7

{1, PW 11-PF T OV
06 b g N, N A A LA A .y

o] PW 11-1° Carbon ‘

0.4 N
031 PW 11-2° Carbon

Y i

02
0.1 PW 11-UV Sub-ppm concentrations

e,

- P

e e N, — . A A e

007

L] L] ] L]
05 1.0 1.5 20 25 3.0 35 4.0 4.5 50 55 6.0 6.5 7.0 75 8.0 85 9.0 95 100 105 110 115 min

Hildenbrand et al. Sci. Tot. Environ. 2018, 634, 1519-1529.



8-12 % Salinity

Forward Osmosis (FO)

> 26 % Salinity

Draw Solution
(DS)

&« &

:

(3
a N Salt

pEm

T
water
L E
® o |
water !
| S

o =organic, minerals, and pollutants

Osmotic pressure is primary driving force
Recover water and decrease waste volume
Requires further desalination
Less energy intensive than:
e Membrane distillation
 Mechanical vapor compression
e Reverse osmosis (RO)
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e Permian PW is 2 —3.5x higher
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Flux, Fouling/Scaling
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Liden et al. Water 2019, 11, 1437. SEM of membrane surfaces



Oil-Wetted Solids

Diesel
Volatile range Decomposing Residual
organics organics inorganics  inorganics
| — Temperature O.12um
374 - A | 1000
i I — — TEA
Oil-wet—
- 800 §
D 2- = 0.76um
() -600 o
0 0
i e
= 1. - 400 3
’-.6 )
-200 O Lum
0 / 0 Iron Sulfide, Iron Oxides,
6 4'0 8I0 Calcium/Iron Carbonate Scale,
Barium Sulfate Scale, Sand, Dirt
Time (min) etc.

TGA of oil-wetted solids

Liden et al. Water 2019, 11, 1437.



Forward Osmosis (FO)

Membrane

A J

oF

@J

’_.g__.@_T L ®- 08—

Pump
@ Temperature probe

® Heat Exchanger

@
Draw Solution —— Feed Solution

Pump

Balance

Low energy consumption

Effective for concentrating high TDS PW
Susceptible to scaling and fouling
Scaling solved with periodic washing
Fouling still a problem

Pre-treatment needed for long-term field
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Optimized washing protocol for long-term
field use

Ultimately, borders on too SSS with need for
pre-treatment
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Develop and test new technologies
and best management practices for
unconventional oil and gas extraction

Waste handling/processing
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Expand methodologies for evaluating
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Outreach, building awareness, and
promoting environmental sustainability
In the energy sector.
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