

Types of Exposure Evaluations

- Historical Data
- Predictive Modeling
- Direct Reading
 - Short-term / Instantaneous
 - Continuous Monitoring
- Personal Monitoring
 - Short-term
 - Length Of Activity
 - Full Shift
- · Statistical Modeling
- Medical Monitoring / Surveillance

WHY SAMPLE?

Baseline Monitoring

Compliance Monitoring

Evaluate Space and Time Distributions

Evaluate Effectiveness of Engineering Controls

Sampling

Exposure Assessment Strategy

- What to sample
- Who to sample
- Where to sample
- When to sample
- How many samples

Sampling Methodology

HOW to sample

Target Agent

Sampling Objective

Occupational Exposure Limit

- Length of Exposure
- Safety Factor

Recognized Methods

- NIOSH or OSHA Validated
- Consensus Standards
- Limits of Detection / Method Sensitivity

Feasibility

- Size of Exposed Population
- Frequency and Duration of Activity
- Turn-around Time

Cost

METHOD SELECTION CONSIDERATIONS

Types of OELs

TIME-WEIGHTED AVERAGES (TWA)

- 8-hour Exposure Limit
- Assumes 16-hour Recovery

SHORT-TERM EXPOSURE LIMITS (STEL)

• Generally, a 15-minute Exposure

EXCURSION LIMITS

• Exposure Time Varies with Agent

CEILING

• Exposure Time Varies with Agent

IMMEDIATELY DANGEROUS TO LIFE AND HEALTH (IDLH)

ANALYTICAL SENSITIVITY AND SAMPLING

- OEL = 50 ug/m^3
- QL = $10 \mu g/sample$
- $V_{min} = (10 \mu g / 50 ug/m^3) x 1000 L/m^3$
- V min = 200 L

BUT WAIT - We actually want to detect down to 10% of OEL so

$$V_{min} = (10 \ \mu g \ / \ 5 \ \mu g/m^3) \ x \ 1000 \ L/m^3$$

 $V_{min} = 2,000 \ L$

SAMPLING & ANALYTICAL ERRORS

Systemic Errors in Sampling

- Leaks in sampling train
- Wrong sampling media
- Improper sample storage

Systemic Errors in Lab Analysis

- Loss of sample

Random Sources of Sampling Error

- Within and b/n day variations in:
- exposure concentrations

- operation of sampling equipmentlab analysis (b/n days)b/n analysts in conducting analysis

PROPERTIES OF DIRECT-READING INSTRUMENTS

LIMIT OF DETECTION (L.O.D.)

Lower Limit Above the Background Level where a <u>Reproducible</u> <u>Response</u> Occurs.

DECDONICE TIME

Usually Expressed as the Time Required to Reach 90-95% of Full Response (15-120 Seconds). All DRIs Take Time to Respond.

SENSITIVITY

Reproducible
Instrument Response
to the Substance that
Generates a
Measurement.

How Closely the

Instrument's

Measurement is to

the True Sample

Concentration.

"NOISE LEVEL"

The Background Level Below the L.O.D. Generated by the Instrument.

INTERFERENCES

Sensitivity to Other Substances that Affects the Reliability & Confidence in the Measured Value.

RANGE

Min. & Max. Output of the Instrument.

REPEATABILI

Precision. How Close Repeated Measures are to Each Other. A Series of Measurements may be Precise (In Close Agreement w/ Each Other) yet Vary from the True Sample Concentration.

How Well the Sample Data can be Recovered.

SAMPLING TECHNIQUES FOR PARTICULATES

DIRECT MONITORING OF PARTICULATES

- Optical
 - Light scattering vs light extinction
- Condensation
 - Vapor condensation and light scattering
- Electrical/Electromagnetic
 - Piezobalance vs β attenuation vs ESP
- Visual

PARTICULATE SAMPLING AND ANALYSIS

- Sampling Particle Size and Exposure Criteria
 - Total Dust
 - Inhalable Dust
 - Respirable Dust
 - Particle Size
 Determination
- Pre-weighed or matched weight filter media
- Flow rate considerations

Image source: SKC, Inc.

SAMPLING PARTICULATES

- Filtration
- Impingement
- Impaction
- Centrifugation
- Elutriation

PARTICULATE SAMPLING BY FILTRATION

- Cheap & simple to use for aerosol monitoring
- Applications:
 - Gravimetry (change in filter weight)
 - Chemical analysis
 - Fiber and particle counting

PARTICLE SAMPLING BY IMPINGEMENT

Wet method of particle and chemical sampling

- Glass impingers contain absorbing solution
- Air driven into or pulled through solution
- Glass frit generates bubbles,

 surface area of air in contact with solution
- Also used to collect hot stack emissions in air pollution sampling

ACGIH'S PARTICLE-SIZE SELECTIVE TLVS

Based on <u>3 classes</u> of particle sizes (50th%ile):

- *Inhalable* 100μm A.E.D.
- Thoracic 10μm A.E.D.
- **Respirable** 4µm A.E.D.

PARTICLE SAMPLING BY IMPACTION

Cascade Impactor (multi-stage collector)

- large particles impact plate
- smaller particles pass thru mesh or bounce off plate to next stage
- each stage has a pre-determined particle size "cut point"

PARTICLE SAMPLING BY CENTRIFUGE

Ex. Cyclone

- Typically has one defined cut point
- Large particles fall out by inertia
- Cut point efficiency depends on flow rate

SKC Aluminum Cyclone

DIRECT-READING INSTRUMENTS

- Colorimetric Indicator Tubes
- Chemically Sensitive Paper Tape
- Combustible Gas Indicators (CGI)
- Broad-band or Metal Oxide Sensors
- Electrochemical Cells
- Photoionization Detectors
- Flame Ionization Detectors
- Infrared Spectrophotometers

GAS AND VAPOR SAMPLING

- Sorbent Tube
- Summa Canister
- Tedlar Bag
- Impinger
- Passive Monitor

GAS AND VAPOR SAMPLING

Short-term, "grab" sampling

- portable bags (ex. Tedlar)
- evacuated canisters

Longer-term, integrated sampling

- Use of solid adsorbents
- passive monitoring badge

SOLID ADSORBENTS

- Charcoal
 - HC, HC-Cl, Esters, Alcohols, Ketones
- Silica Gel
 - Amines, Phenols, Methanol, Inorganic Acids
- Polymers
- Chemically-treated
 - Ethylene Oxide (EtO), Inorganic Acids, Formaldehyde

BREAKTHROUGH

- Tubes typically have a front & back half
- The sample can migrate on the tube
- If concentration on back half of tube is ≥ 10% of the front, breakthrough may have occurred
- Loss of sample results in random error, negative bias.

PASSIVE MONITORING BADGES

- a.k.a. diffusive samplers
- operate @ low air flow (20-45 cc/min)
- integrate exposure over time
- as accurate & precise as actively pumped samples submitted for lab analysis
- Accuracy of chemical sorbent affected by T & RH (same for activated charcoal)

